
D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 1 of 63

URBANITE

Supporting the decision-making in urban transformation with
the use of disruptive technologies

Deliverable D3.7

Data aggregation and storage module implementation v1

Editor(s): TEC, ENG

Responsible Partner: TECNALIA

Status-Version: Final - v1.0

Date: 04.10.2021

Distribution level (CO, PU): PU

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 2 of 63

Project Number: GA 870338

Project Title: URBANITE

Title of Deliverable:
Data aggregation and storage module implementation
v1

Due Date of Delivery to the EC: 30.09.2021

Workpackage responsible for the
Deliverable:

WP3–Data Management Platform

Editor(s): TEC, ENG

Contributor(s): TEC, ENG

Reviewer(s): JSI

Approved by: All Partners

Recommended/mandatory
readers:

WP4, WP5

Abstract: This deliverable will have two versions and will present

the software implementation of the data aggregation
and storage module accompanied with the design
specification and documentation. This deliverable is
the result of Task3.3.

Keyword List: Storage, Aggregation, Catalogue, Software

Licensing information: This document is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information
contained therein

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 3 of 63

Document Description

Document Revision History

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 16/07/2021 Draft ToC FhG

V0.2 01/09/2021 First draft TECNALIA

V0.3 16/09/2021 Content reorganization and addition
of aggregation and fusion sections

TECNALIA

V0.4 22/09/2021 Addition of data catalogue sections ENG

v0.5 30/09/2021 Suggestions by reviewers TECNALIA

v1.0 04/09/2021 Final version TECNALIA

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 4 of 63

Table of Contents

Table of Contents .. 4

List of Figures .. 5

List of Tables .. 6

Terms and abbreviations ... 7

Executive Summary ... 8

1 Introduction .. 9

1.1 About this deliverable ... 9

1.2 Document structure .. 9

2 Implementation ... 10

2.1 Functional description ... 10

2.1.1 Fitting into overall URBANITE Architecture ... 10

2.2 Technical description .. 11

2.2.1 Data Fusion .. 11

2.2.2 Data Aggregation ... 12

2.2.2.1 Traffic Flow Data Aggregation ... 12

2.2.2.2 Bike Data Aggregation ... 13

2.2.3 Data Storage & Retrieval ... 15

2.2.3.1 Challenges and architectural design ... 16

2.2.3.2 Storage Layer ... 17

2.2.3.3 Access Layer .. 19

2.2.3.4 Technical specifications ... 22

2.2.4 Data Catalogue .. 23

3 Data Storage & Retrieval -delivery and usage ... 25

3.1 Installation instructions ... 25

3.2 User Manual .. 27

3.3 Licensing information .. 27

3.4 Download .. 27

4 Data Catalogue -delivery and usage .. 27

4.1 Installation instructions ... 27

4.2 User Manual .. 27

4.3 Licensing information .. 31

4.4 Download .. 31

5 Conclusions ... 32

6 References ... 33

7 APPENDIX: Data models .. 34

7.1 Traffic Flow Observed ... 34

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 5 of 63

7.2 Air QualityObserved .. 34

7.3 WeatherObserved ... 35

7.4 Calendar and Day Specification ... 35

7.4.1 DaySpecification .. 35

7.4.2 Calendar .. 36

7.5 Metadata ... 37

8 APPENDIX: Storage & Retrieval API ... 38

8.1 Storage .. 38

8.1.1 insertTData (POST) .. 38

8.1.2 updateTData (PUT) .. 41

8.2 Retrieval .. 43

8.2.1 getTData (GET) .. 43

8.2.2 getTData (single record) (GET) .. 46

8.2.3 getTDataRange (GET) .. 48

8.2.4 getSupportedDataModels (GET) ... 50

8.3 Metadata ... 52

8.3.1 dataset (PUT) ... 52

8.3.2 dataset (DELETE) ... 56

8.3.3 getDataset (GET) ... 57

8.3.4 getCatalogueDatasets (GET) .. 59

8.3.5 searchDatasets (GET) .. 61

List of Figures

FIGURE1 -URBANITE ARCHITECTURE ... 11
FIGURE 2 - TIME SERIES STRUCTURE FOR A TRAFFIC DATA AT A GIVEN ROAD LOCATION CORRESPONDING TO A

SENSOR LOCATION .. 12
FIGURE 3 - INFORMATION RELATED TO THE START AND END POINTS OF THE BIKE TRAJECTORIES 14
FIGURE 4 - VISUALIZATION OF ONE OF THE DIRECT TESSELLATIONS PROVIDED IN URBANITE FOR THE DISTRICTS

OF THE CITY OF BILBAO. THE NUMBER SHOWN FOR EACH DIVISION CORRESPONDS TO THE VALUE OF THE

ZONE_ID... 14
FIGURE 5 - VISUALIZATION OF VORONOI AREAS TESSELLATION OBTAINED BY URBANITE. THE INPUT FOR THE

GENERATION ARE THE LIMITING RECTANGLE AND THE SET OF RED POINTS MARKED IN THE MAP. 15
FIGURE 6 - DATA STORAGE & RETRIEVAL REPOSITORIES ... 15
FIGURE 7 - TECHNOLOGY STACK ... 17
FIGURE 8 – SCHEMA ABOUT URBANITE COMPONENTS (UI, DATA CATALOGUE AND CONNECTORS, DS&R) 23
FIGURE 9 – DATA CATALOGUE MANAGEMENT OF FEDERATED ODMS .. 28
FIGURE 10 – DATA CATALOGUE CONFIGURATION MANAGEMENT .. 28
FIGURE 11 – DATA CATALOGUE FEDERATED METADATA SEARCH BY TAG ... 29

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 6 of 63

FIGURE 12 – DATA CATALOGUE FEDERATED METADATA SEARCH.. 29
FIGURE 13 –INFORMATION FIELDS OF DATASET’ METADATA SEARCH LIST .. 30
FIGURE 14– DATA CATALOGUE FEDERATED METADATA DATASET DETAIL VIEW ... 30
FIGURE 15 – DATA CATALOGUE- DISTRIBUTION - INFORMATION ICON ... 30
FIGURE 16 – DATA CATALOGUE -DETAILS OF A DISTRIBUTION ... 31

List of Tables

TABLE 1: STATUS OF DATA FUSION, STORAGE AND RETRIEVAL/CATALOGUE REQUIREMENTS FROM D5.1 10
TABLE 2: STRUCTURE FOR DAY SPECIFICATION .. 35
TABLE 3: STRUCTURE FOR A CALENDAR SPECIFICATION ... 36
TABLE 4: API FOR DATA INSERTION ... 38
TABLE 5: API FOR DATA UPDATE .. 41
TABLE 6: API FOR DATA RETRIEVAL ... 43
TABLE 7: API FOR DATA RETRIEVAL (SPECIFIC RECORD) ... 46
TABLE 8: API FOR DATA RETRIEVAL (TIME RANGE) ... 48
TABLE 9: API FOR THE RETRIEVAL OF THE DATA MODELS INFORMATION .. 50
TABLE 10: API FOR THE INSERT AND UPDATE OF METADATA ... 52
TABLE 11: API FOR THE DELETION OF METADATA .. 56
TABLE 12: API FOR THE RETRIEVAL OF DATASET METADATA .. 59
TABLE 13: API FOR THE SEARCH AND RETRIEVAL OF DATASET METADATA .. 61

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 7 of 63

Terms and abbreviations

API Application Programming Interfaces

BI Business Intelligence

CSV Comma Separated Values

DCAT Data CATalog Vocabulary

DCAT-AP Data CATalog Vocabulary - Application Profile

EC European Commission

GNU GNU's Not Unix

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

JAR Java ARchive

JDBC Java Database Connectivity

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

JVM Java Virtual Machine

NoSQL Not Only SQL

OD Origin Destination

RDBMS Relational DataBase Management System

REST Representational State Transfer

SQL Structured Query Language

URL Uniform Resource Locator

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 8 of 63

Executive Summary

This deliverable contains an overview of the software components that are related to the tasks

of data aggregation, storage, retrieval and its catalogue. This refers to the process of mapping,

aggregation, storage and retrieval of the curated data. A common model for storage of the

information and knowledge extraction is being defined, handling the semantic processing of

the curated data as well as the aggregation and deduplication of the data that originate from

distinct sources. Finally, the long-term and short-term storage strategy and implementation of

a set of APIs for retrieval are under development. For each existing module described in this

deliverable, an overview along with a description is given. Where applicable, details on

configuration and usage are provided. The components are implemented following a

microservice approach, so they fit well with the global docker-based architecture.

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 9 of 63

1 Introduction

The term Data Management Platform stands for a variety of distinct software components that
work together to deliver the key functionalities that are data harvesting, data curation, and
data aggregation and storage. The three deliverables D3.2, D3.5, and D3.7 focus on these core
features respectively. Due to the interaction between these modules the aforementioned
deliverables should be understood as a collection of documents related to the same
overarching concept that is the Data Management Platform.

1.1 About this deliverable

Within the Data Management Platform this deliverable focuses on the components related to
data fusion and aggregation, data storage and retrieval and data catalogue. It presents fusion
and aggregation techniques of interest for urban mobility, the challenges involved in storing
and retrieving big volumes of data as well as managing heterogeneous formats, and a solution
for managing datasets and related metadata.

1.2 Document structure

Section 2.1 covers the functionalities provided by the four components related to data fusion

and aggregation, data storage and retrieval and data catalogue, and their fitting on the general

architecture defined in WP5. Section 2.2 describes the technical details of the different

components in the Data Management Platform. Then, for each of the main modules,

dedicated sections 3, 4 and 5, identify their installation instructions, a brief user manual,

licensing information and the repository URL for downloading the source code. The document

wraps up with a conclusion and references.

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 10 of 63

2 Implementation

2.1 Functional description

As mentioned in the introduction, this deliverable focuses on the 4 components related to
data fusion and aggregation, data storage and retrieval and data catalogue.

The functional requirements for these components were listed in deliverable D5.1 and a
detailed design was provided in deliverable D5.4. We present here a short summary and the
status of development. All the requirements have been fulfilled for the data models and
datasets that are covered in the first prototype. More data models will be supported for the
second version.

Table 1: Status of Data fusion, storage and retrieval/catalogue requirements from D5.1

Component Requirements in D5.1 + current status

Data
fusion/aggregation

• DF.01. Aggregation. The component should allow to
aggregate curated data coming from different data sources
if needed. (partially fulfilled-more aggregations need to be
computed automatically)

• DF02. Deduplication. The component should allow the
deduplication of the data (fulfilled for v1 data models).

• DF03. Data mapping. The data should be mapped into EU
vocabularies (fulfilled for v1 data models).

• DF.04. MetaData mapping. The metadata should be mapped
into DCAT-AP metadata (fulfilled).

Data Storage • DS.01. Big data storage. The harvested data should be
persisted to a big data capable storage solution (fulfilled).

• DS02. DCAT-AP compliance. The data storage component
should be able to process and store DCAT-AP compliant
metadata (fulfilled).

Data Retrieval /
Data Catalogue

• DR.01. Data Retrieval. The data retrieval component must
expose API to retrieve and query the data stored in the
different repositories (fulfilled).

• DR.02. Data Hub. The metadata stored in the repositories
should be accessible through a data hub in a uniform way
taking advantage of DCAT-AP standard and related profile
(fulfilled).

2.1.1 Fitting into overall URBANITE Architecture

The 4 components described in this deliverable have been implemented following a
microservice approach, so they fit well with the docker-based architecture designed in WP5.
Besides, the Data Catalogue offers a user interface to manage and search through the
datasets.

The components described in this deliverable are high-lighted in green in the architecture
diagram from deliverable D5.4 below:

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 11 of 63

Figure1 -URBANITE architecture

2.2 Technical description

This section describes the technical details of the different components in the Data
Management Platform dedicated to data fusion & aggregation, data storage & retrieval and
data cataloguing.

Some data fusion and aggregation functionalities have been integrated into the different
functional modules related to the analysis of traffic and mobility by bicycles. In the next
versions of the Data Manegement Platform, it is proposed to provide them with their own
entity, deployed capabilities and a specific interface.

2.2.1 Data Fusion

According to [1]“data fusion techniques combine data from multiple sensors and related
information from associated databases to achieve improved accuracy and more specific
inferences than could be achieved by the use of a single sensor alone.”

The integration of data and knowledge from the same or several different sources is called
data fusion. The terms information fusion and data fusion are commonly used as synonyms,
but there is a little difference. The term data fusion refers to the integration of raw data, i.e.
directly obtained from sensors whereas the term information fusion is used to refer to the
integration of already processed data [2]. In the case of URBANITE, the data management
platform deals mostly with information fusion.

The purpose of using data/information fusion is to improve data quality, i.e. to reduce error
probability and to have a higher reliability of the data being used in the algorithms for analytics
and decision-making.

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 12 of 63

There are different data fusion techniques and the approach to use depends on the intended
usage. E.g. images from different types of cameras can be fused to obtain more information, or
data from complementary data sources can be fused to create improved datasets.

In URBANITE, weather data coming from different data sources and weather services will be
fused to create improved datasets covering more variables. Other data fusion examples will be
analyzed for version 2 of the platform and components.

2.2.2 Data Aggregation

Data aggregation is the process of gathering data and presenting it in a summarized format.

Data aggregation is useful e.g. to hide personal information or to provide information in a

synthetic form or to train the models in WP4.

In the case of Traffic Data, the following aggregated functions are calculated before

performing the training of the Artificial Intelligence models in WP4:

• Initial date and time of the data, typically the Unix timestamp.

• End date and time of data, typically the Unix timestamp.

• Temporal aggregation period, typically 5 or 15 minutes.

• Maximum value of the traffic flow.

• Minimum value of the traffic flow.

• Number of holes within the data.

• Average period of each hole.

• Standard Deviation

Next, we provide a more detailed description of traffic flow data aggregation and bike data
aggregation computed in URBANITE.

2.2.2.1 Traffic Flow Data Aggregation

Traffic flow data measured by sensors can be provided in different ways. One common way (as
provided by the Bilbao use case) is to provide an aggregated time series structure describing
the number of vehicles that have gone through a particular road at a given sensor location.

Figure 2 - Time series structure for a traffic data at a given road location corresponding to a sensor
location

The structure can be seen inFigure 2. Each line in the time series has two values being the first
one the timestamp (in seconds) in Epoch format and the second one the number of vehicles
that have gone through that specific location for the last 5 minutes.

This period, 5 minutes or 300 seconds is the temporal aggregation rate used for this time
series. The period can vary from time series to time series and depending on the application. In
the case of URBANITE, temporal aggregation rates of5 and 15 minutes are considered. The 15
minutes aggregation is computed from the previous one. The computation of time series with

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 13 of 63

longer temporal aggregation period implies the loss of information. For this reason, data is
usually stored with the finer resolution available.

As it is mentioned above, the resolution to be used depends on the specific application but
also on the actual data measured. It could be thought that the best would be to always use the
finer resolution but, in practice, using the finer resolution could imply working with a time
series with a lot of noise, whereas increasing the temporal aggregation period averages the
noise producing a smoother time series. Hence, these two aspects must be balanced, on one
hand the time series should have the most possible information, and on the other with the
least possible noise. The periods chosen in URBANITE, 5 and 15 minutes, correspond to values
in which the noise and the amount of information are compensated producing time series that
are appropriated to train AI model for prediction.

Another important aspect to mention is that, although we use a 5-minute aggregation rate,
that does not imply that we can count on the fact that the sensors will always provide data
every 5 minutes. For example, inFigure 2 there is no data available for timestamp
1631523900. This usually occurs when of working with real data because there are always
situations where the sensor has gone offline due to issues related to the data capturing
process, power outages, connectivity problems or other obstacles that do not allow to obtain
the correct data.

However, the traffic data is not always provided by the city in an aggregated time series
format. For example, in the Helsinki use case, a timestamp is stored every time a vehicle goes
through the sensor location. This implies that in order to transform this information into an
aggregated time series format, as shown in ¡Error! No se encuentra el origen de la referencia.,
some calculations must be performed. The aggregation component of the Data Management
platform is in charge of performing these calculations periodically. Given an aggregation period
and a starting time stamp, a division of the timeline can be performed and the trips that lie in
each slot can be added to produce the aggregated time series format.

In certain cases, other aggregations need to be performed, for example some traffic sensors
divide the information depending on the type of vehicle (motorcycle, regular car or long
vehicle, i.e., a bus or a truck). In the traffic flow prediction procedure performed in URBANITE,
the traffic flow is not distinguished according to the vehicle type. Therefore, a vehicle type
aggregation needs to be done. Other sorts of aggregations include the aggregation of vehicles
measured in different lanes of the road.

2.2.2.2 Bike Data Aggregation

The harvested data related to bikes are the GPS data of the individual bike rentals, in the case
of Bilbao and Helsinki use cases rented using the city’s public service. These data are used in
URBANITE for the computation of Origin-Destination (OD) matrixes and for the analysis of
trajectories. For the first case, some aggregations need to be computed by the Data
Management Platform. For the second case, data cleaning processes need to be carried out
(see D3.5 for more detailed information about Cleaning Trajectory Data).

In the case of the computation of the OD matrixes, a reduced set of data is used and only the
initial and end points of each rental are considered (see Figure 3). The data in each row
represents a rental where the 3 first values correspond to the starting point of the trajectory
(timestamp in seconds in Epoch format when the rental started, and GPS latitude and
longitude coordinates), and the last 3 values correspond to the end of the trajectory
(timestamp and GPS coordinates).

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 14 of 63

Figure 3 - Information related to the start and end points of the bike trajectories

There are two different aggregation processes to be performed in the computation of the OD
matrixes: temporal and spatial aggregation. The temporal aggregation corresponds to the
same type of aggregation performed in the case of traffic flow data, i.e. trips are summed up
for a given time period. Typically, the aggregation periods for the computation of the OD
matrixes are longer than for the prediction of traffic data, being a typical value equal to 1 hour.
The reason for choosing such a large value, in comparison to the traffic flow case, is due to the
fact that the number of trips is notably lower, and a longer period is needed in order to obtain
enough statistics to reduce the noise.

The spatial aggregation implies adding together all the trips within the area of interest. For this
purpose, a tessellation of the map of the area of interest, i.e. a division of the map that fills all
the zone of interest, needs to be provided.

In the case of the OD matrix computation, two different mechanisms are provided within the
URBANITE project: a direct method by means of a geojson object, and by defining a set of
points to produce a Voronoi tessellation1.

The direct method needs a geojson2that represents a “FeatureCollection” object which
contains a set of features where the geometry should be of type Polygon. Each of these
features should have a property of namezone_id that will later be used to identify each of
the areas.

Figure 4 - Visualization of one of the direct tessellations provided in URBANITE for the districts of the city
of Bilbao. The number shown for each division corresponds to the value of the zone_id.

1 https://mathworld.wolfram.com/VoronoiDiagram.html
2 https://geojson.org/

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 15 of 63

Alternatively, in order to generate the Voronoi areas, two inputs need to be provided: a set of
points and a rectangle containing all the previous points and that set a limit to all the Voronoi
generated areas. These and the resulting areas generated by the tool are shown inFigure 5.

Figure 5 - Visualization of Voronoi areas tessellation obtained by URBANITE. The input for the generation
are the limiting rectangle and the set of red points marked in the map.

The resulting Voronoi areas that can be used in the process of the spatial aggregation in the
computation of the OD matrix are defined as the set of points that are closer to the given input
points. This definition implies that the Voronoi areas are polygons. A possible set of points to
define the spatial aggregation area typically is the set of locations where the bicycles can be
rented, i.e., the bike stations.

2.2.3 Data Storage & Retrieval

The Data Storage & Retrieval component provides the means to store and retrieve datasets,
DCAT-AP compliant metadata, and related data. Hence, this component needs to have
repositories to store both DCAT-AP compliant metadata and transformed data, as depicted in
Figure 6.

Figure 6 - Data Storage & Retrieval repositories

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 16 of 63

2.2.3.1 Challenges and architectural design

When deciding about the technologies to use to implement the Data Storage & Retrieval
component, several factors were taken into account. One of the main factors to consider was
related to the volume of data to be managed, as the number of records to be ingested can be
very high in some cases due to the update frequencies (for example, traffic flows can reach
around 800.000 monthly registrations). Another important factor was related to the diversity
of available data. Although a specific data model is common to several use cases, they may not
all have the same information available, making the records, within the same common model,
quite heterogeneous. For these cases, the JSON-LD format is quite suitable.

Therefore, it was necessary to design a storage system which could be capable of handling
large volumes of data while offering considerable flexibility in terms of the structure of the
data, characteristics that fit very well with the NoSQL MongoDB database.

On the other hand, it was also taken into consideration that there may be other types of data
sources with information that does not present a high update or a large volume of records, for
which solutions such as the MySQL database can be used.

Even so, although these two databases (MongoDB and MySQL) have been chosen for this first
prototype, the system is flexible and remains open to adding other databases that may be
more appropriate to the needs that may arise in the future, or to changing the current ones.

To make this possible, the main access point to the storage system is through a REST API. This
API provides a set of services that will be in charge of accessing the most appropriate database
depending on the type of data it is managing, in a totally transparent way to the modules that
interact with it.

In addition, since the processing modules may require certain functionality on the data beyond
the services provided by the API (fairly generic data insertion or retrieval), it has been decided
to include a technology like Presto, which provides access via JDBC to the different databases,
so these modules can execute custom queries (SQL-like). Presto has connectors for many of
the most common databases, including those used in this first version (MongoDB and MySQL).

A high-level architecture of this component is shown in Figure 7:

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 17 of 63

Figure 7 - Technology stack

It consists of two levels:

• At the bottom level is the storage itself, being a combination of different types of
databases:

o SQL Databases, like MySQL.
o NoSQL Databases, like MongoDB.

• At the top level are the mechanisms for accessing the repositories, both for storing
and retrieving data. In turn, this layer consists of two components:

o A REST API with predefined methods for inserting or accessing data and
metadata.

o A JDBC connection through the Presto software, to perform custom queries
(SQL statements), different to those offered by the API.

These layers and their components are described in more detail below.

2.2.3.2 Storage Layer

As mentioned before, the chosen Data Storage system is a combination of SQL (MySQL) and
NoSQL (MongoDB) databases, to cover all the needs that may arise from the analysis and
prediction processes developed in WP4. The data is stored in the databases according to the
models described in 7 APPENDIX: Data models and formatted in JSON-LD format as key-values.

MongoDB3is an open source, document-oriented NoSQL database, which means that it stores
data in the form of JSON-like documents, thus it supports arrays and nested objects as values.
Being based on documents and Schema Less, the documents within a collection (table) may
not have the same fields, thus avoiding having fields with empty or null values that make the
size of the database grow unnecessarily.

In addition, MongoDB does not require large computing resources, and it can be used in a
decentralized environment in a distributed way. This allows scalability not only vertically (CPU
and RAM) but also horizontally (creating more nodes).

3 http://www.mongodb.com/

Access Layer

Storage Layer

API
(Web Service)

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 18 of 63

On the other hand, MySQL4 is one of the world's most popular relational database (RDBMS),
and it is based on a client-server model. Among its main characteristics we can find:

• Low cost in hardware and software requirements for its execution.

• Offers high speed and good performance.

• Capable of handling large volume of data.

• Ease of installation and configuration, supported in almost 100% of current operating
systems.

• High stability and low probability of data corruption.

• Supports security through SSL (Secure Socket Layer) and data encryption.

• Possibility of using different storage mechanisms that offer different operating speeds,
physical support, capacity, geographical distribution, transactions ...

• Use of ACID transactions (Atomic, Consistent Isolated, Durable), through commit,
rollback, crash recovery and record blocking, and Distributed Transactions.

• Supports replication.

• Supports ANSI SQL5

• Ease of data import and export processes.

All these features have made us opt for the inclusion of MongoDB and MySQL in URBANITE.

Finally, all harvested data in this first prototype is stored in MongoDB. Next, we explain how
the collections have been organized for each of the data models depending on their volume.

• Traffic Flow Observed: the number of records (traffic status measurements) can be
too high to store all of them in a single collection. For example, in Bilbao Use Case we
can find approximately 800,000 records per month, which would make almost 10
million records per year.

Due to performance issues, and although the logic of storing and retrieving the data is
somewhat complicated, the data is divided into one collection for each month and
year, so handling a volume of about 800.000 records per collection (Bilbao use case) is
fast and efficient.

The names of the collections follow the pattern
trafficflowobserved_<city>_<year>_<month>. For example:

trafficflowobserved_bilbao_2021_08
 trafficflowobserved_helsinki_2021_06
 …

To speed up data queries, collections also have an index on the dateObserved field, in
descending order, in addition to the index that MongoDB generates on the unique
record identifier.

• Air Quality Observed: For this data model, the number of records per use case is
estimated to be around 50.000 per month, so a volume close to 600.000 records per
year allows us to have a single collection per year and use case.

4 https://www.mysql.com/
5 https://docs.oracle.com/database/121/SQLRF/ap_standard_sql001.htm

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 19 of 63

The names of the collections follow the pattern airqualityobserved_<city> _<year>.
E.g.:

airqualityobserved_bilbao_2021
airqualityobserved_messina_2020
…

To speed up data queries, collections also have an index on the dateObserved field, in
descending order, in addition to the index that MongoDB generates on the unique
record identifier.

• Day Specification: In this case, there should be one record for each day of a year, so
the total number of records is small enough to be able to have all the data in a single
collection per use case, without compromising performance.

The collections are named dayspecification_<city>:

 dayspecification_amsterdam
dayspecification_bilbao
dayspecification_helsinki
dayspecification_messina

• Calendar: For this data model, there should be one record for each year, so all the data
will be stored in just one collection per use case. The collections are named
calendar_<city>:

 calendar_amsterdam
calendar_bilbao
calendar_helsinki

 calendar_messina

• Metadata: All metadata information is stored in a single collection named metadata,
since we estimate that the number of records to be handled is not excessively large, so
there is no need to divide them into different collections. Storing them in a single
collection also facilitates operations on the metadata, both the insertion and the
search by tags.To perform these searches by tags in the text fields, a text index6has
been created on the collection.

2.2.3.3 Access Layer

The access layer contains a REST API with predefined methods for inserting or accessing data
and metadata and a JDBC connection, through the Presto software, to the different databases.

2.2.3.3.1 API

The API is the main access point to the datasets and metadata, providing methods to store and
retrieve both of them. It offers a set of REST Web Services, so all the accesses are made
through HTTP/HTTPS requests.

6 https://docs.mongodb.com/manual/core/index-text/

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 20 of 63

This section provides a list of these methods, divided into storage, retrieval, and metadata
related REST services. The complete description (method, input and output parameters, etc.) is
described in 8 APPENDIX: Storage & Retrieval API and accessible at:

https://urbanite.esilab.org:8443/data/swagger-ui/index.html?configUrl=/data/v3/api-
docs/swagger-config

2.2.3.3.2 PRESTO

Presto is an open source distributed SQL query engine designed to query large data sets
distributed over one or more heterogeneous data sources, including traditional relational
databases and other data sources or NoSQL databases.

Presto is based on connectors which allows Presto to interact with the resources using a
standard API.

DRAFT VERSIO
N

https://urbanite.esilab.org:8443/data/swagger-ui/index.html?configUrl=/data/v3/api-docs/swagger-config
https://urbanite.esilab.org:8443/data/swagger-ui/index.html?configUrl=/data/v3/api-docs/swagger-config

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 21 of 63

Another important feature for which the use of Presto has been chosen is the possibility of
connecting to it (and therefore to the databases) through a JDBC driver. This allows analytics
or prediction modules to carry out personalized and optimized queries, beyond the generic
ones offered by the API.

2.2.3.3.2.1 Configuration

Presto has four configuration files, located in config folder:

• Node Properties: environmental configuration specific to each node. A node is a single
installed instance of Presto on a machine.

Example:

node.environment=urbanite

node.id=a7413702-23b4-11e6-bb6e-600308a67678

node.data-dir=/opt/presto/presto-server-0.157/data

• JVM Config: contains a list of command line options used for launching the Java Virtual
Machine. The format of the file is a list of options, one per line.

Example:

-server

-Xmx16G

-XX:+UseG1GC

-XX:G1HeapRegionSize=32M

-XX:+UseGCOverheadLimit

-XX:+ExplicitGCInvokesConcurrent

-XX:+HeapDumpOnOutOfMemoryError

-XX:OnOutOfMemoryError=kill -9 %p

• Config Properties: configuration for the Presto server. Every Presto server can function
as both a coordinator and a worker, but dedicating a single machine to only perform
coordination work provides the best performance on larger clusters.

Example:

coordinator=true

node-scheduler.include-coordinator=true

http-server.http.port=8080

query.max-memory=5GB

query.max-memory-per-node=1GB

discovery-server.enabled=true

discovery.uri=http://presto:8080

• Log Properties (optional): allows setting the minimum log level for named logger
hierarchies.

Example:

com.facebook.presto=INFO

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 22 of 63

More detailed information about the configuration files of Presto can be found here7

2.2.3.3.2.2 Connectors

To provide access to the different databases from Presto, it is necessary to create catalogs to
configure the connectors of each one of them, creating the configuration files in the
config/catalog folder. Each of these files must have the proper name of the connector.

➢ MySQL configuration8
This database catalog only needs the connection properties (url of the server, and user
and password to connect)
Example:

connector.name=mysql

connection-url=jdbc:mysql://MYSQL_HOST:3306

connection-user=root

connection-password=MYSQL_ROOT_PASSWORD

➢ MongoDB configuration9
This catalog has a set of configuration options, but only the server (or list of servers) is
mandatory.
Example:

connector.name=mongodb

mongodb.seeds=MONGO_HOST

mongodb.socket-keep-alive=true

2.2.3.3.2.3 JDBC10

The connection to Presto through JDBC is done in the same way as with any other database,
only the server and the user and password are needed. Also, the connection is made to a
specific catalog (database type) and schema (database).

Example:

String url = "jdbc:presto://[server:port]/mongodb/urbanite";

Connection connection = DriverManager.getConnection(url, "root", null);

database
catalog

2.2.3.4 Technical specifications

The Data Storage component has been developed in Java using the Spring Framework11 and
Spring Boot12.

7 https://prestodb.io/docs/current/installation/deployment.html#configuring-presto
8 https://prestodb.io/docs/current/connector/mysql.html
9 https://prestodb.io/docs/current/connector/mongodb.html
10 https://prestodb.io/docs/current/installation/jdbc.html
11 https://spring.io/
12 https://spring.io/projects/spring-boot

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 23 of 63

2.2.4 Data Catalogue

The Data Catalogue component provides access to the metadata of the different data sources
and their datasets using a federated approach. In particular, Data Catalogue component is
based on Idra which is a platform able to federate Open Data Management Systems (ODMS)
based on different technologies providing a unique access point. It harmonizes the metadata
coming from federated data sources following DCAT-AP standard.

More specifically the Data Catalogue provides functionalities to discover and access the
datasets’ metadata collected and managed by the components of URBANITE Ecosystem for
data acquisition, aggregation and storage, such as the Data Storage & Retrieval component.

The Data Catalogue makes use of a specific connector, developed ad hoc for URBANITE
ecosystem, to interact with the Data Storage & Retrieval. Following the guidelines for the
development of Idra connectors, the new connector implements the operations to allow the
interaction between the Data Catalogue and the Data Storage & Retrieval.

The URBANITE user interface already integrates the Data Catalogue user interface as depicted
in Figure 8. In this schema is underlined also the usage of the Data Storage &Retrieval
connector between the Data Catalogue and the Data Storage & Retrieval components(a part of
other available connector types, e.g. CKAN, DKAN etc.).

Figure 8 – Schema about Urbanite components (UI, Data Catalogue and connectors, DS&R)

A connector is the basic building block used by Idra to interact and harmonize, following DCAT-
AP standard, the metadata of the datasets managed by the federated Open Data Management
System. Within Idra, a specific connector is provided for any of the supported data sources
typology (indeed, Idra already includes connectors to federate ODMS based on CKAN, DKAN,
Socrata, etc).

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 24 of 63

The new created connector allows to access and manage the datasets provided by the Data
Storage & Retrieval by exploiting its exposed Rest API “/data/getCatalogueDatasets”.

The datasets’ metadata returned by this API are finally added to Idraand made available for all
functionalities provided by the tool as for searching (using Idra APIs).More technical details
about the Data Catalogue are reported in the deliverable D5.4.

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 25 of 63

3 Data Storage & Retrieval -delivery and usage

3.1 Installation instructions

In order to integrate well into the URBANITE platform all components are available as Docker13
images. However, before building the Docker images the corresponding JAR files need to be
created. A JAR file is an executable that run runs on the JVM.

The storage component is composed by two Docker groups:

➢ API

The API of the storage component rely on a build tool called Maven for dependency
management and generation of the JARs. As such, the deployment of a service can be
achieved using the commands below. Note that curly brackets indicate that applicable
values need to be substituted.

$>mvn clean package

$> docker build –t urbanite/dataStorage .

$> docker run –p {PORT}:80 urbanite/dataStorage

For this component a certain configuration is needed to be applied using environment
variables, in this case the setup parameters to connect to MongoDB. If it is not present,
the default values will be used:

VARIABLE DESCRIPTION DEFAULT VALUE

MONGO_HOST Host where MongoDB is installed Mongodb

MONGO_PORT Port where MongoDB is listening 27017

MONGO_DBNAME Name of the MongoDB Database to

insert or retrive data

urbanite

These environment variables can be passed to Docker containers, for example:

$>docker run -it -p 80:80 -e MONGO_HOST=172.26.41.138 -e

MONGO_PORT=27018 urbanite/datastorage

➢ Databases and Presto

As Presto has to connect to the different databases (MongoDB and MySQL), a single
Docker-Compose14 configuration file will be used to create all the images at once.

For this, Presto needs some previous configuration (see section ¡Error! No se
encuentra el origen de la referencia.). Also, MySQL needs to create some user to be
used by Presto, so in the creation of MySQL Docker image, these variables will be set:

VARIABLE DESCRIPTION

MYSQL_ROOT_PASSWORD The password for ROOT user, to create this user in MYSQL

13 https://www.docker.com/
14 https://docs.docker.com/compose/

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 26 of 63

configuration

MYSQL_USER A user to be used by Presto

MYSQL_PASSWORD The password for MYSQL_USER

Below is the docker-compose file:

brings up the dependencies

version: '2'

services:

 presto:

container_name: urbanite_presto

 build:

 context: ./presto

dockerfile: Dockerfile

 image: presto

 links:

 - mongodb

 - mysql

depends_on:

 - mongodb

 - mysql

 ports:

 - "8080:8080"

 - "8889:8889"

mysql:

container_name: urbanite_mysql

 image: mysql:8.0.24

 environment:

MYSQL_ROOT_PASSWORD: '{**********}'

MYSQL_USER: 'presto'

MYSQL_PASSWORD: '{**********}'

 ports:

 - "3306:3306"

 volumes:

 - /opt/mysql_data:/var/lib/mysql

mongodb:

container_name: urbanite_mongodb

 image: mongo:4.0.24

 ports:

 - "27017:27017"

 volumes:

 - /opt/mongo_data:/data/db

 This will:
o Create a docker container for MySQL, from an official image, with a user

'presto' and running at port 3306.
o Create a docker container for MongoDB, from an official image, and running at

port 27017.
o Create a docker container for Presto, from a custom image built with a custom

configuration, and running at ports 8080 and 8889.
The configuration for the creation of the image just uses an official image and
configures it with the MySQL user and the catalogues (databases) to which
Presto is connected.

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 27 of 63

3.2 User Manual

The only part of the component that a user can interact with is the API, a REST Web Service.
This API is developed following the OpenAPISpecification15and offers a human-readable
version at http://[server:port]/data/swagger-ui/index.html?configUrl=/data/v3/api-
docs/swagger-config

This page shows the services that are implemented, giving information about the access URLs,
parameters, return codes and values...

Also, a JSON file with the full specification can be found at https://[server:port]/data/v3/api-
docs

3.3 Licensing information

The license terms for the software are under discussion among the consortium. AGPLv2 and
AGPLv316 are being considered.

3.4 Download

All source code resides in the GitLab maintained by Tecnalia17.

4 Data Catalogue -delivery and usage

4.1 Installation instructions

This section covers the steps needed to properly install the Data Catalogue. As before
described the Data Catalogue is an extension of Idra which is an Open Data Federation
Platform developed as a Java EE (Enterprise Edition) application. This tool can be installed
through Docker18. The installation instructions are detailed in the Installation overview section
of the online manual. The detailed instruction to install or use the administration
functionalities of Idra can be also found at the corresponding section on Read The Docs19.

4.2 User Manual

The Data Catalogue provides a set of Restful APIs to interact with the IDRA tool and its
functionalities. These API are developed following the OpenAPI specification and in particular
Apiary20. The official APIs are available on this official link21.These APIs are grouped into
Administration APIs, End User APIs and Federation APIs. Further information about Idra APIs
are reported in the deliverable D5.4 and available in the Idra documentation section22.

The Data Catalogue offers the functionalities to discover and access the datasets collected and
managed and produced by the components of URBANITE Ecosystem for data acquisition,
aggregation and storage. The Data Catalogue provides these main functionalities to let to the

15 https://swagger.io/specification/
16 https://www.gnu.org/licenses/agpl-3.0.en.html
17 https://git.code.tecnalia.com/urbanite/private/wp3-data-management/storage/dataStorage
18 Install Idra on Docker - https://idra.readthedocs.io/en/latest/admin/install_docker/
19Idra Installation - https://idra.readthedocs.io/en/latest/admin/installation/
20Apiary - https://apiary.io/
21API description document - https://idraopendata.docs.apiary.io/api-description-document
22Open API Idra - https://idraopendata.docs.apiary.io/#

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 28 of 63

administrator user to manage catalogues federation and to manage configuration as depicted
in Figure 9 and in Figure 10.

Figure 9 – Data Catalogue management of federated ODMS

Figure 10 – Data Catalogue configuration management

The Data Catalogue provides also to the end users main functionalities to perform federated
metadata search among federated catalogues (Figure 11).

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 29 of 63

Figure 11 – Data Catalogue federated metadata search by tag

The Data Catalogue metadata search can filter the data using a facet approach. In particular,
the following facets are available to filter on dataset metadata results by Tags, Formats,
Licenses, etc. as depicted in Figure 12.

Figure 12 – Data Catalogue federated metadata search

The Data Catalogue metadata search page shows all metadata results, as default visualization,
without any filtering. To perform search, the user can insert one or more keywords into the
search bar as depicted in Figure 11.

Moreover, as previously reports, the user can filter the obtained results selecting a tab,
license, etc. reported in the panels located on the left (Figure 12).

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 30 of 63

The results are reported in a list of datasets matching with the selected filter and the
submitted keywords; for each result the following information is reported: title, description
and all available distributions.

Figure 13 –Information fields of dataset’ metadata search list

By clicking on its title, it is possible to access the detailed information of a dataset, as depicted
in Figure 12. The detailed information includes the tags associated to the dataset, all the
available distributions, the publisher name, the identifier of the dataset, etc.

Figure 14– Data Catalogue federated metadata dataset detail view

Finally, by clicking on the information icon associated to each distribution, it is possible to
access further details (Figure 16): the associated description, the format, the Access URL (for
direct access to the distribution), the Download URL (to download the distribution), and the
license.

Figure 15 – Data Catalogue- Distribution - Information Icon

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 31 of 63

Figure 16 – Data Catalogue -details of a distribution

4.3 Licensing information

The Data Catalogue is licensed under Affero General Public License (AGPL) version 3. For
further information read license23 section on official Github of the project.

4.4 Download

Detail about this extension and about this new connector are provided in the Data Catalogue
section of this same document. The source code of the Data Catalogue is available on Github24.

23IDRA License - https://github.com/OPSILab/Idra#license
24Data Catalogue Github - https://git.code.tecnalia.com/urbanite/private/wp3-data-
management/urbanite-data-catalogue-src

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 32 of 63

5 Conclusions

This document describes the technical details of the components associated with the data
fusion, aggregation and storage integrated on the URBANITE Data Processing Platform. Data
Fusion is referred to the integration of multiple raw data from the same or several different
sources gathered from sensors is called data fusion. Data Aggregation is the process of
gathering data and presenting it summarized or anonymized; for this first iteration, some
aggregated functions are calculated related to bike and traffic estimation before performing
the training of the Artificial Intelligence models in WP4. Finally, on a hand, the Data Storage &
Retrieval capacities allow storing and retrieving datasets and associated metadata; on the
other hand, the functionalities provided by the Data Catalogue allow to discover the datasets
managed by the Data Storage & Retrieval and to federate additional data sources, offering a
unique point toa access datasets coming from scattered sources This deliverable presents a
technical description of the first release of the different components, providing technical
details for future integration. Thus, these components are part of the data processing chain,
integrating with those defined in deliverables D3.2 and D3.5, associated with data collection
and curation.

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 33 of 63

6 References

[1] D. L. Hall y J. Llinas, «An introduction to multisensor data fusion,» Proceedings of the IEEE,
vol. 85, nº 1, p. 6–23, 1997.

[2] F. Castanedo, «A Review of Data Fusion Techniques,» The Scientific World Journal, vol.
2013.

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 34 of 63

7 APPENDIX: Data models

Deliverable D3.4 described the common data models to be used in URBANITE. This section
provides more detailed and updated information about those models and how they are being
used by the Data Management Platform components in this first prototype.

7.1 Traffic Flow Observed

This model is based on the FIWARE’s TrafficFlowObserved25 data model, and contains
information about an observation of traffic flow conditions at a certain place and time, such as
the number of vehicles detected during the observation, the occupancy of the lanes, the
location of the detection device, etc.

The model is very complete and collects a lot of information, but not all of it is of interest for
WP4 or available in the cities’ data sources. The subset of fields that are harvested are: id,
address, averageVehicleSpeed, dateObserved, intensity, location and occupancy.

Example:

{

 "id": "urn:ngsi-ld:TrafficFlowObserved:59d4ce0d_17afe3d67a6_-2ca4",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 22.0,

 "dateObserved": "2021-08-01T00:25:00.000Z",

 "intensity": 190.0,

 "location": {

 "coordinates": [

 [[505545.02027647,4789451.73590806],

 [505554.84865274, 4789477.77248377]]

],

 "type": "Polygon"

 },

 "occupancy": 0.06,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

}

7.2 Air QualityObserved

Based on FIWARE’s AirQualityObserved26 data model, it contains information about an
observation of air quality conditions at a certain place and time, such as the carbon monoxide,
nitrogen dioxide, material particles, temperature, humidity, etc.

The subset of fields that are harvested are: id, dateObserved, location, NO, NO2, NOX, PM10
and SO2.

Example:

{

 "id": "urn:ngsi-ld:AirQualityObserved:62:290820210500",

 "dateObserved": "2021-08-29T05:00:00Z",

 "location": {

25https://github.com/smart-data-models/dataModel.Transportation/tree/master/TrafficFlowObserved
26 https://github.com/smart-data-models/dataModel.Environment/tree/master/AirQualityObserved

DRAFT VERSIO
N

https://github.com/smart-data-models/dataModel.Transportation/tree/master/TrafficFlowObserved

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 35 of 63

 "coordinates": [43.26750551179745, -2.935188110338201],

 "type": "Point"

 },

 "no": 2,

 "no2": 30,

 "nox": 33,

 "pm10": 13,

 "so2": 10,

 "type": "AirQualityObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

}

7.3 WeatherObserved

This model is based on FIWARE’s WeatherObserved27 data model, containing information
about an observation of weather conditions at a certain place and time, such as precipitation,
humidity, temperature, UV index, etc.

The subset of fields that are harvested are: id, dateObserved, location, atmosphericPressure,
precipitation, relativeHumidity, temperature, windDirection and windspeed.

Example:

{

 "id": "urn:ngsi-ld:WeatherObserved::Bilbao-2021-06-30T07:00:00.00Z",

 "type": "WeatherObserved",

 "dateObserved": "2021-06-30T07:00:00.00Z",

 "temperature": 13.3,

 "precipitation": 0,

 "atmosphericPressure": 1024,

 "location": {

 "type": "Point",

 "coordinates": [-2.9349377987, 43.2641971992]

 },

 "relativeHumidity": 1,

 "windDirection": 120,

 "windSpeed": 10,

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

]

7.4 Calendar and Day Specification

These two models have been defined within the scope of the Urbanite project to collect
information on city calendars. The daySpecification model collects information about a specific
day, such as whether it is a holiday, school day, the day of the week ... The Calendar model
collects information for a whole year, including a list of references (ID) of each of its days
(daySpecification).

7.4.1 DaySpecification

Table 2: Structure for day specification

Field Description Type Mandatory

27 https://smart-data-models.github.io/dataModel.Weather/WeatherObserved/doc/spec.md

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 36 of 63

id Unique identifier of the entity Text Y

type Entity type Text, must be 'DaySpecification' Y

date The date of this entity Text in ISO8601 format Y

description A description of this item Text N

workingDay If it is a working day (1) or not (0) Numeric (0 or 1) Y

schoolDay If it is a school day (1) or not (0) Numeric (0 or 1) Y

publicHoliday If it is a holiday (1) or not (0) Numeric (0 or 1) Y

weekDay Day of the week Numeric (1 to 7) Y

Example

{

 "id": "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_01",

 "type": "DaySpecification",

 "date": "2015-01-01",

 "description": "Año nuevo",

 "workingDay": 0,

 "schoolDay": 0,

 "publicHoliday": 3,

 "weekDay": 4,

 "createdAt": "2021-06-17T07:24:53.376Z",

 "modifiedAt": "2021-06-17T07:24:53.376Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

}

7.4.2 Calendar

Table 3: Structure for a calendar specification

Field Description Type Mandatory

id Unique identifier of the entity Text Y

type Entity type Text, must be 'Calendar' Y

city City of the calendar Text N

location Location of the item Geojson N

year Year of the calendar Numeric Y

days Days that conform the calendar List of Text Y

Example (reduced to just 6 days, it could contain a whole year):

{

 "id": "urn:ngsi-ld:Calendar:Bilbao:2021",

 "type": "Calendar",

 "city": "Bilbao",

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 37 of 63

 "location": {

 "coordinates": [-2.93609619140625,43.26345626603949],

 "type": "Point"

 },

 "year": 2021,

 "days": [

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_01",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_02",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_03",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_04",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_05",

 "urn:ngsi-ld:DaySpecification:Bilbao:2021_01_06",

]

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

}

7.5 Metadata

Metadata must be provided in a DCAT-compliant format.

Example:

{

 "@graph": [

 {

 "@id": "https://urbanite-project.eu/ontology/URBANITE_PROJECT",

 "@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data Bilbao"},

 "issued": "2021-06-17T09:24:56",

 "modified": "2021-06-17T09:25:03",

 "publisher": "https://urbanite-project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data Bilbao"},

 "distribution": [

 "https://urbanite-project.eu/ontology/distribution/52c20f95-66a2-412d-9ac0-

efe673707615",

 "https://urbanite-project.eu/ontology/distribution/5b9e9ed4-769c-435a-af0f-

e25b41adbf6f",

 "https://urbanite-project.eu/ontology/distribution/1be969b1-88bd-4209-808a-

004ccaef7c30"

],

 "keyword": ["Calendar", "Bilbao"]

 },

 {

 "@id": "https://urbanite-project.eu/ontology/distribution/1be969b1-88bd-4209-808a-

004ccaef7c30",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD representation",

"format": "http://publications.europa.eu/resource/authority/file-type/JSON_LD",

"license": "http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL":

"https://bilbao.urbanite.esilab.org/data/getTData/calendar/bilbao?filters=%7B%22year%22%

3D2016%7D"

 },

 {

 "@id": "https://urbanite-project.eu/ontology/distribution/52c20f95-66a2-412d-9ac0-

efe673707615",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2018 in NGSI-LD representation",

"format": "http://publications.europa.eu/resource/authority/file-type/JSON_LD",

"license": "http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2018",

 "accessURL":

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 38 of 63

"https://bilbao.urbanite.esilab.org/data/getTData/calendar/bilbao?filters=%7B%22year%22%

3D2018%7D"

 },

 {

 "@id": "https://urbanite-project.eu/ontology/distribution/5b9e9ed4-769c-435a-af0f-

e25b41adbf6f",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2015 in NGSI-LD representation",

"format": "http://publications.europa.eu/resource/authority/file-type/JSON_LD",

"license": "http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL":

"https://bilbao.urbanite.esilab.org/data/getTData/calendar/bilbao?filters=%7B%22year%22%

3D2015%7D"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id": "http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher", "@type": "@id"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

}

8 APPENDIX: Storage & Retrieval API

8.1 Storage

8.1.1 insertTData (POST)

Table 4: API for data insertion

/insertTData Adds new data of a specific type to the database of a city.

Method

POST

Input Params (* means mandatory)

model*

(path param)

Text with the type of the data to be inserted. Must be one of the implemented data types,
currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 39 of 63

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

data*

(request body)

Text, in a JSON array format, with the data to be inserted. These data must be in the format
corresponding to the type of data indicated in the "model" parameter.

Success response

200 If all the input parameters are right, the method will return this code, and the JSON response
will contain three fields with the details of the operations done:

• inserted: array with the IDs of the elements inserted successfully,

• updated: array with the IDs of the elements updated.

• notInserted: array with the IDs of the elements that couldn’t be inserted. In this
case, also will have a field reason with the description of the error.

Example:

{

 "inserted": [

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_-363a"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_-3603"

 }

],

 "notInserted": [

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_1dec",

 "reason": "Wrong input data, missing some required field(s) or wrong

values."

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:5d993408_179e63999c7_1df6",

 "reason": "Wrong input data, missing some required field(s) or wrong

values."

 }

],

 "updated": [

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4968"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4969"

 }

]

}

Error response

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 40 of 63

400 Bad Request

The method checks if the data sent is in the required format (list of elements) and if each
element to be inserted corresponds to the indicated model. It also checks if the model and
city parameters are the expected values.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the error.

Example:

{

"Error":"Input data is not in required format (list of 'Traffic Flow

Observation' objects)"

}

Sample call

curl -X POST

"http://[server:port]/data/insertTData/trafficFlowObserved/bilbao"

-H "accept: application/json"

-H "Content-Type: application/json"

-d "[

 {

 \"id\":\"urn:ngsi-

ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4968\",

 \"address\":{

 \"addressCountry\":\"ES\",

 \"addressLocality\":\"Bilbao\"

 },

 \"averageVehicleSpeed\":26,

 \"dateObserved\":\"2021-09-01T08:05:00Z\",

 \"intensity\":77,

 \"location\":{

 \"coordinates\":[[[505863.2934643,4790330.91052876],

 [505864.01,4790329.365]]],

 \"type\":\"Polygon\"

 },

 \"occupancy\":1,

 \"type\":\"TrafficFlowObserved\",

 \"@context\":[

 \"https://smartdatamodels.org/context.jsonld\",

 \"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld\"

]

 },

 {

 \"id\":\"urn:ngsi-

ld:TrafficFlowObserved:740c2b3d_17ba0648be0_4969\",

 \"address\":{

 \"addressCountry\":\"ES\",

 \"addressLocality\":\"Bilbao\"

 },

 \"averageVehicleSpeed\":36,

 \"dateObserved\":\"2021-09-01T08:05:00Z\",

 \"intensity\":481,

 \"location\":{

 \"coordinates\":[[[504426.40986984,4790030.56457333],

 [504426.745,4790032.297]]],

 \"type\":\"Polygon\"

 },

 \"occupancy\":0.04,

 \"type\":\"TrafficFlowObserved\",

 \"@context\":[

 \"https://smartdatamodels.org/context.jsonld\",

 \"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld\"

]

 }

]"

city
model

First element
to be inserted

Second
element to be
inserted

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 41 of 63

8.1.2 updateTData (PUT)

Table 5: API for data update

/updateTData Updatesa specific record (identified by its ID field) of the database.

Method

PUT

Input Params (* means mandatory)

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented data
types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

id*

(path param)

ID of the element to be updated.

data*

(request body)

Text, in a JSON format, with the data to be updated. This data must be in the format
corresponding to the type of data indicated in the "model" parameter.

Success response

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 42 of 63

200 If all the input parameters are right, the method will return this code, and the JSON response
will contain one field updatedData with the new data of the element once updated.

Example:

{

 "updatedData": {

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 16,

 "dateObserved": "2021-08-17T00:45:00Z",

 "intensity": 36,

 "location": {

 "coordinates": [[[504417.9371092392,4790030.564573327],

 [504453.27293873084, 4790030.564573327],

 [504453.27293873084, 4790133.21077546],

 [504417.9371092392, 4790133.21077546]]],

 "type": "Polygon"

 },

 "name": "273",

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-08-17T09:37:43.393Z",

 "dateModified": "2021-09-07T07:31:35.263Z",

 "id": "urn:ngsi-ld:TrafficFlowObserved:273:070920210045AAAA"

}

}

Error response

400 Bad Request

The method checks if the data sent is in JSON format and if it corresponds to the indicated
model. It also checks if the ID field of the data (mandatory field) is the same as the one
passed as parameter, as well if the model and city parameters are the expected values.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the error.

Examples:

{

 "Error": "Input data is not in required format ('Traffic Flow Observation'

object)"

}

{

 "Error": "Wrong input data, IDs are different."

}

404 Not Found

If the element to be update doesn’t exist, a 404 code will be returned, with a JSON response
with the error:

{

 "Error": "Document 'urn:ngsi-ld:TrafficFlowObserved:273:07092023456' not

found."

}

Sample call

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 43 of 63

curl -X PUT

"http://[server:port]/data/updateTData/trafficFlowObserved/bilbao/

urn%3Angsi-ld%3ATrafficFlowObserved%3A273%3A070920210045AAAA"

-H "accept: application/json"

-H "Content-Type: application/json"

-d “

{\"id\":\"urn:ngsi-ld:TrafficFlowObserved:273:070920210045AAAA\",

\"address\":{

\"addressCountry\":\"ES\",

\"addressLocality\":\"Bilbao\"

},

\"averageVehicleSpeed\":16,

\"dateObserved\":\"2021-08-17T00:45:00Z\",

\"intensity\":36,

\"location\":

{

\"coordinates\":[[[504417.9371092392,4790030.564573327],

[504453.27293873084,4790030.564573327],

[504453.27293873084,4790133.21077546],

[504417.9371092392,4790133.21077546]]],

\"type\":\"Polygon\"

},

\"name\":\"273\",

\"type\":\"TrafficFlowObserved\",

\"@context\":[

\"https://smartdatamodels.org/context.jsonld\",

\"https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld\"

]

}"

city
model
id

Data to
be
updated

8.2 Retrieval

8.2.1 getTData (GET)

Table 6: API for data retrieval

/getTData Gets data of the specified type from the database. Some filters can by applied to model
fields.

Method

GET

Input Params (* means mandatory)

model*

(path
param)

Text, with the data type of the element to be updated. Must be one of the implemented
data types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

city*

(path
param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 44 of 63

filters

(query
param)

Different filters to be applied to the search of the records to be returned. They must be in
JSON format and match the names of the fields of the model. Otherwise, a BAD_REQUEST
error will be returned.

Example:

{

"occupancy": 10,

"intensity": 20

}

both fields, occupancy and intensity are part of the trafficFlowObserved model.

limit

(query
param)

Number of records to be retrieved. If not set, the default number of records (1000) will be
returned.

Success response

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 45 of 63

200 If all the input parameters are right, the method will return this code, and the response
will be a JSON array with the list of the elements requested.

Example:

[

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17bbf3cb8f8_851",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-09-07T07:45:00Z",

 "intensity": 10,

 "location": {

 "coordinates":

[[[504169.87,4790169.594],[504215.57915011,4790128.87897186],[504268.78134

883,4790081.60210874]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-07T07:53:43.872Z",

 "dateModified": "2021-09-07T07:53:43.872Z"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:59d4ce0d_17bbf0b8c3f_-5ba8",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 4,

 "dateObserved": "2021-09-07T06:50:00Z",

 "intensity": 10,

 "location": {

 "coordinates":

[[[505482.00123305,4789609.88571801],[505595.37956903,4789700.8144343],[50

5621.18245562,4789721.03079363],[505621.339,4789721.18]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-07T06:57:32.011Z",

 "dateModified": "2021-09-07T06:57:32.011Z"

 }

]

Error response

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 46 of 63

400 Bad Request

The method checks if the filters sent are in the required format (JSON) and if its content
are fields of the specified data model. It also checks if the model and city parameters are
the expected values, and if the limit parameter (if set) is greater than 0.

If any of these checks fail, a Bad Request code will be returned. In this case, the method
will return a JSON response, with just one field Error, that will contain a description of the
error.

Example:

{

 "Error": "Model {trafficFlowObserved} has not a field 'speed'"

}

Sample call

curl -X GET

"http://[server:port]/data/getTData/trafficFlowObserved/bilbao?

filters=%7B%22intensity%22%3A%2010%7D

&limit=2"

-H "accept: application/json"

city
model
 filters
 limit

8.2.2 getTData (single record) (GET)

Table 7: API for data retrieval (specific record)

/getTData
(single record)

Gets a specific record from the database, identified by its ID.

Method

GET

Input Params (* means mandatory)

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented data
types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 47 of 63

id*

(path param)

ID of the element to be updated.

Success response

200 If the element requested exists, the method will return this code, and the JSON response will
contain the element data.

Example:

{

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17b9e3ebc45_24d2",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-08-31T22:00:00Z",

 "intensity": 9,

 "location": {

 "coordinates": [[[505863.2934643,4790330.91052876],

[505864.01,4790329.365],

[505864.637,4790327.54]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-08-31T22:09:23.993Z",

 "dateModified": "2021-08-31T22:09:23.993Z"

}

Error response

400 Bad Request

The method checks if the model and city parameters are the expected values.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the error.

Example:

{

"Error":"Invalid value 'trafficFlow' for parameter 'model'"

}

404 Not Found

If the element requested doesn’t exist, a 404 code will be returned, with a JSON response
with the error:

{

 "Error": "Document 'urn:ngsi-ld:TrafficFlowObserved:273:07092023456' not

found."

}

Sample call

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 48 of 63

curl -X GET

"http://[server:port]/data/getTData/trafficFlowObserved/bilbao/

urn%3Angsi-ld%3ATrafficFlowObserved%3A740c2b3d_17b9e3ebc45_24d2"

-H "accept: application/json"

city
model
id

8.2.3 getTDataRange (GET)

Table 8: API for data retrieval (time range)

/getTDataRange Gets data of a specific model from the database within a specific time range.

Method

GET

Input Params (* means mandatory)

model*

(path param)

Text, with the data type of the element to be updated. Must be one of the implemented
data types, currently:

• trafficFlowObserved

• daySpecification

• calendar

• airQualityObserved

• weatherObserved

city*

(path param)

Text, with the city (use case) to which the data correspond. Must be one of:

• bilbao

• messina

• helsinki

• amsterdam

startDate*

(query param)

Date and time (ISO860128 UTC format) from which to get the data.

Mandatory if parameter endDate is not present.

Example: 2021-01-07T00:00:00.000Z

endDate*

(query param)

Date and time (ISO8601 UTC format) until which to get the data.

Mandatory if parameter startDate is not present.

Example: 2021-01-08T22:45:00.000Z

limit

(query param)

Number of records to be retrieved. If not set, the default number of records (1000) will be
returned.

Success response

28 https://www.iso.org/iso-8601-date-and-time-format.html

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 49 of 63

200 If all the input parameters are right, the method will return this code, and the response will
be a JSON array with the list of the elements requested.

Example:

[

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17bb86bfdd2_28f0",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-09-06T00:00:00Z",

 "intensity": 0,

 "location": {

 "coordinates": [[[505863.2934643,4790330.91052876],

[505875.24029728,4790333.17459119],

[505863.2934643,4790330.91052876]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-06T00:07:19.758Z",

 "dateModified": "2021-09-06T00:07:19.758Z"

 },

 {

 "id": "urn:ngsi-ld:TrafficFlowObserved:740c2b3d_17bb86bfdd2_28f1",

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Bilbao"

 },

 "averageVehicleSpeed": 0,

 "dateObserved": "2021-09-06T00:00:00Z",

 "intensity": 18,

 "location": {

 "coordinates": [[[504426.40986984,4790030.56457333],

[504425.67779232,4790043.20283264],

[504426.40986984,4790030.56457333]]],

 "type": "Polygon"

 },

 "occupancy": 0,

 "type": "TrafficFlowObserved",

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "dateCreated": "2021-09-06T00:07:19.760Z",

 "dateModified": "2021-09-06T00:07:19.760Z"

 }

]

Error response

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 50 of 63

400 Bad Request

The method makes several checks of the parameters. It checks if the model and city
parameters are the expected values, and if the limit parameter (if set) is greater than 0.
Also checks that at least one of the parameters startDate and endDate is set, and if so,
checks that they are in ISO8601 format.

If any of these checks fail, a Bad Request code will be returned, and will return a JSON
response, with just one field Error, that will contain a description of the error.

Examples:

{

"Error": "No time range specified. 'startDate' and/or 'endDate' must be

indicated."

}

{

"Error": "Invalid value '2021/08/01' for parameter 'startDate'"

}

Sample call

curl -X GET

"http://[server:port]/data/getTDataRange/trafficFlowObserved/bilbao?

startDate=2021-09-05T00%3A00%3A00.000Z

&endDate=2021-09-06T00%3A00%3A00.000Z

&limit=2"

–H "accept: application/json"

city
model
startDate
endDate
 limit

curl -X GET

"http://[server:port]/data/getTDataRange/trafficFlowObserved/bilbao?

startDate=2021-09-05T00%3A00%3A00.000Z

&limit=2"

–H "accept: application/json"

city
model
startDate
 limit

8.2.4 getSupportedDataModels (GET)

Table 9: API for the retrieval of the data models information

/getSupportedDa
taModels

Returns information about all the data models that are currently implemented.

Method

GET

Input Params (* means mandatory)

None

Success response

200 Returns a JSON array with the information of the data models implemented. Each element
(model) will have the following fields:

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 51 of 63

• id: identifier of the model, that is usually used as model parameter in the other
services.

• name: full name of the model.

• description: brief description of the model.

• reference: link to the official reference of the model (i.e: FIWARE models). If the
model has been developed specifically for the project, the reference will be
empty.

• example: an example of the structure of the model.

Example (reduced to two models only):

[

 {

 "id": "trafficFlowObserved",

 "name": "Traffic Flow Observed",

 "description": "An observation of traffic flow conditions at a certain

place and time.",

 "reference": "https://github.com/smart-data-

models/dataModel.Transportation/tree/master/TrafficFlowObserved",

 "example": {

 "@context": [

 "https://smartdatamodels.org/context.jsonld",

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld"

],

 "address": {

 "addressCountry": "ES",

 "addressLocality": "Valladolid",

 "streetAddress": "Avenida de Salamanca",

 "type": "PostalAddress"

 },

 "averageHeadwayTime": 0.5,

 "averageVehicleLength": 9.87,

 "averageVehicleSpeed": 52.6,

 "dateObserved": "2016-12-07T11:10:00Z",

 "id": "urn:ngsi-ld:TrafficFlowObserved:TrafficFlowObserved-Valladolid-

osm-60821110",

 "intensity": 197,

 "laneDirection": "forward",

 "laneId": 1,

 "location": {

 "coordinates": [[-4.73735395519672,41.6538181849672],[-

4.73414858659993,41.6600594193478],[-4.73447575302641,41.659585195093]],

 "type": "LineString"

 },

 "occupancy": 0.76,

 "reversedLane": false,

 "type": "TrafficFlowObserved"

 }

 },

 {

 "id": "calendar",

 "name": "Calendar",

 "description": "Information about calendars: year, city, days...",

 "reference": "",

 "example": {

 "example": [

 {

 "id": "urn:ngsi-ld:Calendar:Bilbao:2015",

 "type": "Calendar",

 "city": "Bilbao",

 "location": {

 "coordinates": [-2.93609619140625,43.26345626603949],

 "type": "Point"

 },

 "year": 2015,

 "days": [

 "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_01",

 "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_02"

],

 "createdAt": "2021-05-20T09:32:08.809Z",

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 52 of 63

 "modifiedAt": "2021-05-20T09:52:04.255Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld",

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld2"

]

 },

 {

 "id": "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_01",

 "type": "DaySpecification",

 "date": "2015-01-01",

 "description": "AÃƒÂ±o nuevo",

 "workingDay": 0,

 "schoolDay": 0,

 "publicHoliday": 3,

 "weekDay": 4,

 "createdAt": "2021-05-24T13:26:41.828Z",

 "modifiedAt": "2021-05-25T08:49:11.841Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

 },

 {

 "id": "urn:ngsi-ld:DaySpecification:Bilbao:2015_01_02",

 "type": "DaySpecification",

 "date": "2015-01-02",

 "description": "",

 "workingDay": 1,

 "schoolDay": 1,

 "publicHoliday": 0,

 "weekDay": 5,

 "createdAt": "2021-05-25T08:26:22.811Z",

 "modifiedAt": "2021-05-25T08:49:11.946Z",

 "@context": [

 "https://git.code.tecnalia.com/urbanite/public/-

/raw/master/datamodels/calendar-ngsi.jsonld"

]

 }

]

 }

 }

]

Sample call

curl -X GET

"http://localhost/data/getSupportedDataModels"

-H "accept: application/json"

8.3 Metadata

8.3.1 dataset (PUT)

Table 10: API for the insert and update of metadata

/dataset Adds new metadata of a dataset into the database, of updates the metadata if already
exists for that id.

Method

PUT

Input Params (* means mandatory)

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 53 of 63

id*

(query param)

Unique identifier of the metadata.

data*

(request body)

Text, in JSON format, with the metadata to be inserted.

Success response

200 If all the input parameters are right, the method will return this code, and the JSON
response will contain three fields with the details of the operations done:

• inserted: array with the ID of the metadata if it has been inserted successfully.

• updated: array with the ID of the metadata if it has been been updated.

• notInserted: array with the ID of the metadata if it couldn’t be inserted. In this
case, also will have a field reason with the description of the error.

Example:

{

 "inserted": [

 {

 "id": "6bb9c361_177a635e86a23333333"

 }

],

 "notInserted": [],

 "updated": []

}

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 54 of 63

Error response

400 Bad Request

The method checks that the ID and the metadata has been included, and that this one is in
JSON format.

If any of these checks fail, a Bad Request code will be returned. In this case, the method will
return a JSON response, with just one field Error, that will contain a description of the
error.

Example:

{

"Error": "Input metadata is not in JSON format"

}

Sample call

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 55 of 63

curl -X PUT

"http://[server:port]/data/dataset?id=6bb9c361_177a635e86a2"

-H "accept: application/json"

-H "Content-Type: application/json"

-d "{

 \"_id\":\"6bb9c361_177a635e86a2\",

 \"@graph\": [

 {

 \"@id\":\"https://urbanite-project.eu/ontology/URBANITE_PROJECT\",

 \"@type\":\"foaf:Organization\",

 \"homepage\":\"https://urbanite-project.eu/\",

\"name\":\"URBANITE\"

 },

 {

\"@id\":\"https://urbanite-project.eu/ontology/dataset/Bilbao_Calendar\",

\"@type\":\"dcat:Dataset\",

 \"description\": {

\"@language\":\"en\",

 \"@value\":\"Calendar data Bilbao\"},

\"issued\":\"2021-05-12T10:36:46\",

 \"modified\":\"2021-05-12T15:36:46\",

 \"publisher\":\"https://urbanite-

project.eu/ontology/URBANITE_PROJE\",

 \"title\": {

 \"@language\":\"en\",

 \"@value\":\"Calendar data Bilbao\"},

 \"distribution\": [

 \"https://urbanite-project.eu/ontology/distribution/a732f6c6-fcd8-

4962-8aa9-db7d913a20ae\"],

 \"keyword\":[\"Calendar\",\"Bilbao\"]

 },

 {

 \"@id\":\"https://urbanite-project.eu/ontology/distribution/a732f6c6-

fcd8-4962-8aa9-db7d913a20ae\",

 \"@type\":\"dcat:Distribution\",

 \"description\":\"Calendar data Bilbao year 2015 in NGSI-LD

representation\",

 \"format\":\"http://publications.europa.eu/resource/authority/file

-type/JSON_LD\",

\"license\":\"http://publications.europa.eu/resource/authority/licence/CC_B

Y\",

 \"title\":\"Calendar data Bilbao 2015\",

 \"accessURL\":\"http://storageAPI-to-bedefined/2015\"

 }

],

 \"@context\":

 {

 \"name\":{\"@id\":\"http://xmlns.com/foaf/0.1/name\"},

 \"homepage\":{\"@id\":\"http://xmlns.com/foaf/0.1/homepage\"},

 \"accessURL\":{\"@id\":\"http://www.w3.org/ns/dcat#accessURL\"},

 \"title\":{\"@id\":\"http://purl.org/dc/terms/title\"},

 \"license\":{\"@id\":\"http://purl.org/dc/terms/license\"},

 \"format\":{\"@id\":\"http://purl.org/dc/terms/format\"},

 \"description\":{\"@id\":\"http://purl.org/dc/terms/description\"},

\"distribution\":{\"@id\":\"http://www.w3.org/ns/dcat#distribution\",\"@typ

e\":\"@id\"},

 \"keyword\":{\"@id\":\"http://www.w3.org/ns/dcat#keyword\"},

\"issued\":{\"@id\":\"http://purl.org/dc/terms/issued\",\"@type\":\"http://

www.w3.org/2001/XMLSchema#dateTime\"},

\"publisher\":{\"@id\":\"http://purl.org/dc/terms/publisher\",\"@type\":\"@

id\"},

\"modified\":{\"@id\":\"http://purl.org/dc/terms/modified\",\"@type\":\"htt

p://www.w3.org/2001/XMLSchema#dateTime\"},

 \"dct\":\"http://purl.org/dc/terms/\",

 \"rdf\":\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\",

 \"xsd\":\"http://www.w3.org/2001/XMLSchema#\",

 \"rdfs\":\"http://www.w3.org/2000/01/rdf-schema#\",

 \"dcat\":\"http://www.w3.org/ns/dcat#\",

 \"foaf\":\"http://xmlns.com/foaf/0.1/\",

 \"dc\":\"http://purl.org/dc/elements/1.1/\"

 }

}"

Id

M
e
t
a
d
a
t
a

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 56 of 63

8.3.2 dataset (DELETE)

Table 11: API for the deletion of metadata

/dataset Delete the metadata of a dataset from the database.

Method

DELETE

Input Params (* means mandatory)

id*

(query param)

Unique identifier of the metadata.

Success response

200 If the metadata with the id passed is deleted, the method will return this code, and the
JSON response will contain one field deleted with the id of the metadata deleted.

Example:

{

"deleted": "6bb9c361_177a635e86a534543"

}

Error response

400 Bad Request

The method checks that the id parameter has been included, otherwise Bad Request code
will be returned.

In this case, the method will return a JSON response, with just one field Error, that will
contain a description of the error.

Example:

{

"Error":"Parameter 'id' is required."

}

404 Not found

If the metadata with the id passed doesn’t exist, this error will be returned with a JSON
response with the error.

Example:

{

"Error":"Dataset '6bb9c361_177a635e86a234’ not found."

}

Sample call

curl -X DELETE

"http://[server:port]/data/dataset?id=6bb9c361_177a635e86a534543dasdas"

-H "accept: application/json"

 id

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 57 of 63

8.3.3 getDataset (GET)

/getDataset Gets the metadata of a specific dataset from the database.

Method

GET

Input Params (* means mandatory)

id*

(query param)

Unique identifier of the metadata.

Success response

200 If the metadata with the id passed exists, the method will return this code, and the JSON
response will contain the metadata stored in the database in JSON format.

Example:

{

 "@graph": [

 {

 "@id": "https://urbanite-project.eu/ontology/URBANITE_PROJECT",

 "@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data Bilbao"},

 "distribution": [

 "https://urbanite-project.eu/ontology/distribution/a732f6c6-

fcd8-4962-8aa9-db7d913a20ae",

 "https://urbanite-project.eu/ontology/distribution/059fd3cc-

92b3-4f3d-97de-d050ae022eb5"

],

 "keyword": ["Calendar", "Bilbao"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2015 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 58 of 63

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL": "http://storageAPI-to-bedefined/2015"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id": "http://www.w3.org/ns/dcat#distribution",

"@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher", "@type":

"@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

}

Error response

400 Bad Request

The method checks that the id parameter has been included, otherwise Bad Request code
will be returned.

In this case, the method will return a JSON response, with just one field Error, that will
contain a description of the error.

Example:

{

"Error":"Parameter 'id' is required."

}

404 Not found

If the metadata with the id passed doesn’t exist, this error will be returned with a JSON
response with the error.

Example:

{

"Error":"Dataset '6bb9c361_177a635e86a234’ not found."

}

Sample call

curl -X GET

"http://[server:port]/data/getDataset?id=6bb9c361_177a635e86a"

-H "accept: application/json"

 id

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 59 of 63

8.3.4 getCatalogueDatasets (GET)

Table 12: API for the retrieval of dataset metadata

/getCatalogueDat
asets

Gets the metadata of all the datasets stored in the database.

Method

GET

Input Params (* means mandatory)

None

Success response

200 Returns a JSON array with all the datasets stored.

Example:

[

 {

 "id": "6bb9c361_177a635e86a",

 "metadata": {

 "@graph": [

 {

 "@id": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

"@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "distribution": [

 "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5"

],

 "keyword": ["Calendar","Bilbao"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "@type": "dcat:Distribution",

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 60 of 63

 "description": "Calendar data Bilbao year 2015 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL": "http://storageAPI-to-bedefined/2015"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id":

"http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher",

"@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

}

 }

 },

 {

 "id": "6bb9c361_177a635sfd124a",

 "metadata": {

 "id": "6bb9c361_177a635sfd124a",

"metadata": {

 "@graph": [

 {

 "@id": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

"@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Messina"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data

Messina"},

 "distribution": [

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-63ws-4f3d-97de-fdgs4fdh2eg",

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-43s3-4gds-w436-fhd45sdaf32"

],

 "keyword": ["Calendar","Messina"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-63ws-4f3d-97de-fdgs4fdh2eg",

 "@type": "dcat:Distribution",

 "description": "Calendar data Messina year 2016 in NGSI-LD

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 61 of 63

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Messina 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-43s3-4gds-w436-fhd45sdaf32",

 "@type": "dcat:Distribution",

 "description": "Calendar data Messina year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Messina 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id":

"http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher",

"@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

 }

 }

 }

]

Sample call

curl -X GET

"http://[server:port]/data/getCatalogueDatasets"

-H "accept: application/json"

8.3.5 searchDatasets (GET)

Table 13: API for the search and retrieval of dataset metadata

/searchDatasets Searches among the metadata of the existing dataset.

It makes a search in typical metadata fields: title, description andkeyword.

All the tags search must be present in at least one of these fields.

Method

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 62 of 63

GET

Input Params (* means mandatory)

search

(query param)

Tags to search for, separated by a space.

Optional. If not set, all the metadata will be returned.

Example: Calendar Messina

Success response

200 The method will return this code, and the JSON response will contain a JSON array with
that metadata stored in the database that contain all the tags passed in the parameter
search.

Example:

[

 {

 "id": "6bb9c361_177a635e86a",

 "metadata": {

 "@graph": [

 {

 "@id": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

"@type": "foaf:Organization",

 "homepage": "https://urbanite-project.eu/",

 "name": "URBANITE"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/dataset/Bilbao_Calendar",

 "@type": "dcat:Dataset",

 "description": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "issued": "2021-05-12T10:36:46",

 "modified": "2021-05-12T15:36:46",

 "publisher": "https://urbanite-

project.eu/ontology/URBANITE_PROJECT",

 "title": {"@language": "en", "@value": "Calendar data

Bilbao"},

 "distribution": [

 "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5"

],

 "keyword": ["Calendar", "Bilbao"]

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/059fd3cc-92b3-4f3d-97de-d050ae022eb5",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2016 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2016",

 "accessURL": "http://storageAPI-to-bedefined/2016"

 },

 {

 "@id": "https://urbanite-

project.eu/ontology/distribution/a732f6c6-fcd8-4962-8aa9-db7d913a20ae",

 "@type": "dcat:Distribution",

 "description": "Calendar data Bilbao year 2015 in NGSI-LD

representation",

"format": "http://publications.europa.eu/resource/authority/file-

type/JSON_LD",

DRAFT VERSIO
N

D3.7–Data aggregation and storage module implementation Version 1.0 – Final. Date: 04.10.2021

Project Title: URBANITE Contract No. GA 870338

 www.urbanite-project.eu

Page 63 of 63

"license":

"http://publications.europa.eu/resource/authority/licence/CC_BY",

 "title": "Calendar data Bilbao 2015",

 "accessURL": "http://storageAPI-to-bedefined/2015"

 }

],

 "@context": {

 "name": {"@id": "http://xmlns.com/foaf/0.1/name"},

 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage"},

 "accessURL": {"@id": "http://www.w3.org/ns/dcat#accessURL"},

 "title": {"@id": "http://purl.org/dc/terms/title"},

 "license": {"@id": "http://purl.org/dc/terms/license"},

"format": {"@id": "http://purl.org/dc/terms/format"},

"description": {"@id": "http://purl.org/dc/terms/description"},

 "distribution": {"@id":

"http://www.w3.org/ns/dcat#distribution", "@type": "@id"},

 "keyword": {"@id": "http://www.w3.org/ns/dcat#keyword"},

 "issued": {"@id": "http://purl.org/dc/terms/issued", "@type":

"http://www.w3.org/2001/XMLSchema#dateTime"},

 "publisher": {"@id": "http://purl.org/dc/terms/publisher",

"@type": "@id"},

 "modified": {"@id": "http://purl.org/dc/terms/modified",

"@type": "http://www.w3.org/2001/XMLSchema#dateTime"},

 "dct": "http://purl.org/dc/terms/",

 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

 "xsd": "http://www.w3.org/2001/XMLSchema#",

 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",

 "dcat": "http://www.w3.org/ns/dcat#",

 "foaf": "http://xmlns.com/foaf/0.1/",

 "dc": "http://purl.org/dc/elements/1.1/"

 }

 }

 }

]

Sample call

curl -X GET

"http://[server:port]/data/searchDatasets?search=Bilbao%20Calendar"

-H "accept: application/json"

 search

DRAFT VERSIO
N

